Optimal Design of Neural Nets Using Hybrid Algorithms

نویسندگان

  • Ajith Abraham
  • Baikunth Nath
چکیده

Selection of the topology of a network and correct parameters for the learning algorithm is a tedious task for designing an optimal Artificial Neural Network (ANN), which is smaller, faster and with a better generalization performance. Genetic algorithm (GA) is an adaptive search technique based on the principles and mechanisms of natural selection and survival of the fittest from natural evolution. Simulated annealing (SA) is a global optimization algorithm that can process cost functions possessing quite arbitrary degrees of nonlinearities, discontinuities and stochasticity but statistically assuring a optimal solution. In this paper we explain how a hybrid algorithm integrating the desirable aspects of GA and SA can be applied for the optimal design of an ANN. This paper is more concerned with the understanding of current theoretical developments of Evolutionary Artificial Neural Networks (EANNs) using GAs and other heuristic procedures and how the proposed hybrid and other heuristic procedures can be combined to produce an optimal ANN.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Using Neural Networks and Genetic Algorithms for Modelling and Multi-objective Optimal Heat Exchange through a Tube Bank

In this study, by using a multi-objective optimization technique, the optimal design points of forced convective heat transfer in tubular arrangements were predicted upon the size, pitch and geometric configurations of a tube bank. In this way, the main concern of the study is focused on calculating the most favorable geometric characters which may gain to a maximum heat exchange as well as a m...

متن کامل

Prediction of Gain in LD-CELP Using Hybrid Genetic/PSO-Neural Models

In this paper, the gain in LD-CELP speech coding algorithm is predicted using three neural models, that are equipped by genetic and particle swarm optimization (PSO) algorithms to optimize the structure and parameters of neural networks. Elman, multi-layer perceptron (MLP) and fuzzy ARTMAP are the candidate neural models. The optimized number of nodes in the first and second hidden layers of El...

متن کامل

Prediction of Gain in LD-CELP Using Hybrid Genetic/PSO-Neural Models

In this paper, the gain in LD-CELP speech coding algorithm is predicted using three neural models, that are equipped by genetic and particle swarm optimization (PSO) algorithms to optimize the structure and parameters of neural networks. Elman, multi-layer perceptron (MLP) and fuzzy ARTMAP are the candidate neural models. The optimized number of nodes in the first and second hidden layers of El...

متن کامل

OPTIMUM DESIGN OF DOUBLE CURVATURE ARCH DAMS USING A QUICK HYBRID CHARGED SYSTEM SEARCH ALGORITHM

This paper presents an efficient optimization procedure to find the optimal shapes of double curvature  arch  dams  considering  fluid–structure  interaction  subject  to  earthquake  loading. The optimization is carried out using a combination of the magnetic charged system search, big bang-big crunch algorithm and artificial neural network methods. Performing the finite element  analysis  dur...

متن کامل

Using the hybrid Taguchi experimental design method – TOPSIS to identify the most suitable artificial neural networks used in energy forecasting

The use of artificial neural networks (ANN) in forecasting has many applications. Appropriate design of ANN parameters enhances the performance and accuracy of neural network models.  Most studies use a trial and error approach in setting the value of ANN parameters. Other methods used to determine the best structure of a neural network only use a single evaluation criterion to determine the ap...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2000